If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=25+9
We move all terms to the left:
b^2-(25+9)=0
We add all the numbers together, and all the variables
b^2-34=0
a = 1; b = 0; c = -34;
Δ = b2-4ac
Δ = 02-4·1·(-34)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{34}}{2*1}=\frac{0-2\sqrt{34}}{2} =-\frac{2\sqrt{34}}{2} =-\sqrt{34} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{34}}{2*1}=\frac{0+2\sqrt{34}}{2} =\frac{2\sqrt{34}}{2} =\sqrt{34} $
| 2k=k+14 | | -6x+(-37)=18 | | -2v+2=2(v+7) | | 4x+2=4+2x+4 | | -4=g+24/6 | | 108=6(2w-2) | | W-4w-5=8 | | v/7+38=44 | | 5(x+5)=-3(3x-7)+2x | | 4-(4x-8)=20-3x | | 5(6e-2)=2(6e+4) | | 3/4k=10 | | -2t+36=-44 | | x=180-x/3-12 | | x=(180-x)/3-12 | | 10x-4=4x+16-x | | 18=9(x+19) | | 6x-18=8x-20 | | 20+8x=4x-10 | | 9+11y=75 | | 12+8v=100 | | 3r=2r+9 | | 90=9(f-84) | | -4(x+3)=2x-4+2(4x+5) | | -2(c+1.8)=2.8 | | 4(2x+5)=2(3x+12) | | 34+2v=90 | | (x/3)*0.15=x*0.05 | | 8=4/(v+2) | | 8x+7=19+2x | | g+8/2=1 | | 8x-4=150 |